본문 바로가기

분류 전체보기544

datetime을 이용하여 일주일치 날짜 만들기 파이썬 datetime을 이용하여 일주일치 날짜 리스트 만들기¶ 우선, detetime.now 함수를 이용하여 최근 일주일치 데이터를 리스트 형태로 만들 수 있습니다. In [1]: import datetime today = datetime.datetime.now() date_list = [(today - datetime.timedelta(days=i)).strftime("%Y-%m-%d") for i in range(7)] date_list Out[1]: ['2023-03-01', '2023-02-28', '2023-02-27', '2023-02-26', '2023-02-25', '2023-02-24', '20.. 2023. 3. 1.
datetime to str 파이썬 데이트타임을 문자열로 datetime to str 파이썬 데이트타임을 문자열로 수정¶ 우선, detetime.now 함수를 이용하여 현시점의 날짜 및 시간 정보를 datetime 타입으로 만들고, 이를 문자열로 변환하는 코드 입니다. In [1]: import datetime date = datetime.datetime.now() date.strftime("%Y-%m-%dT%H:%M:%S") Out[1]: '2023-03-01T13:24:13' In [2]: date.strftime("%Y-%m-%d %H:%M:%S") Out[2]: '2023-03-01 13:24:13' 참고로, 문자열을 datetiem 타입으로 전환하는 것도 가능합니다. In [3]: import datetime date = .. 2023. 3. 1.
파이썬 판다스 nan 값 개수에 따른 결측치 처리 thresh 파이썬 판다스 결측값 몇 개 이상 일때 제거 In [1]: import pandas as pd import numpy as np df = pd.DataFrame({"name": ["mike", "twit", "lolli", "cock", "krill", "putty"], "grade" : [np.nan, 1, 2, 2, 3, np.nan], "math":[50, 64, np.nan, np.nan, 75, np.nan], "enlish":[86, 75, 86, np.nan, 90, np.nan]}) df Out[1]: name grade math enlish 0 mike NaN 50.0 86.0 1 twit 1.0 64.0 75.0 2 lolli 2.0 NaN 86.0 3 cock 2.0 NaN NaN 4.. 2023. 2. 27.
pandas 판다스 nan 값 제거, dropna 파이썬, 판다스 nan 값 제거, dropna, 결측값 제거¶ 예시 데이터 생성 In [1]: import pandas as pd import numpy as np df = pd.DataFrame({"name": ["mike", "twit", "lolli", "cock", "krill", "putty"], "grade" : [np.nan, 1, 2, 2, 3, np.nan], "math":[50, 64, np.nan, np.nan, 75, np.nan], "enlish":[86, 75, 86, np.nan, 90, np.nan]}) In [2]: df Out[2]: name grade math enlish 0 mike NaN 50.0 86.0 1 twit 1.0 64.0 75.0 2 lolli 2.0 N.. 2023. 2. 27.
넘파이 어레이 차원 합치기 numpy append [파이썬] 넘파이 어레이 두개를 1차원으로 합치기 : 넘파이 append¶ 1차원 + 1차원 In [1]: import numpy as np data1 = np.array([1,2,3]) data2 = np.array([2,4,6]) np.append(data1, data2) Out[1]: array([1, 2, 3, 2, 4, 6]) 2차원 + 2차원 In [2]: import numpy as np data1 = np.array([[1,2,3], [4,5,6], [7,8,9]]) data2 = np.array([[10,11,12], [13,14,15], [16,17,18]]) np.append(data1, data2) Out[2]: array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, .. 2023. 2. 26.
넘파이 제곱근 Square Root, 제곱값 square, np.sqrt(), np.square() 넘파이 제곱근 Square Root, 제곱값 square, np.sqrt(), np.square()¶ np.sqrt(값) 지정된 값을 대상으로 제곱근 도출합니다 In [2]: import numpy as np value = 4 np.sqrt(value) Out[2]: 2.0 In [3]: # 리스트 및 어레이 값에도 적용 가능합니다. value_list = [4, 9, 16] value_array = np.array([4, 9, 16]) np.sqrt(value_list), np.sqrt(value_array) Out[3]: (array([2., 3., 4.]), array([2., 3., 4.])) np.square(값) 지정된 값을 대상으로 제곱값을 도출합니다. In [4]: np.square(val.. 2023. 2. 25.